LICHTBÖGEN UND ELEKTRISCHE SICHERHEIT IN PV-SPEICHERSYSTEMEN

Ergebnisse im Rahmen des Projekts SPEISI

Felix Eger, Hermann Laukamp, Jérôme Tschupp

Fraunhofer-Institut für Solare Energiesysteme ISE

4. Deutsche Photovoltaikbetriebsund Sicherheitstagung Berlin, 20.10.2017 www.ise.fraunhofer.de

AGENDA

Einleitung

- Schutzkonzepte in PV-Batteriesystemen
- Lichtbogenszenarien in PV-Batteriesystemen

Fazit

Einleitung Brandrisiko durch Elektrizität

- Statistik des Instituts für Schadenverhütung und Schadenforschung der öffentlichen Versicherer, ca. 1500 aufgenommene Schäden in 2016
- Elektrizität mit Abstand häufigste Brandursache
- Brandauslösung meist durch erhöhte Kontaktwiderstände oder Lichtbögen

tos: © Fraunhofer ISE

Einleitung Brandrisiko im Fokus der Forschung

- Lichtbögen in DC-Systemen kritisch, da sie dauerhaft stabil brennen können
- Beispiel PV: Zahlreiche Löt-, Schraub-, Steck- und Klemmverbindungen sind potentielle Fehlerstellen
 - Umfassende Untersuchung in BMUBgefördertem Projekt von 2011 – 2014 www.pv-brandsicherheit.de
- Beispiel Batteriespeicher: Stark steigende Nachfrage an Li-Ionen Systemen, hohe Energiedichte
 - Umfassende Untersuchung in BMWigefördertem Projekt SPEISI seit 2015 www.speichersicherheit.de

Projektpartner:

International Solar Energy Society, German Sect

Einleitung Brandfälle PV-Systeme

Anlagenbestand Brände Mitbrand brandauslösend

- Datenbasis: Internetbasierte Umfrage, Medienrecherche, Info von Brandgutachtern, Feuerwehren und Versicherungen
- Anlagenbestand (D): 1.3 Mio oder 36 GWp (Stand: 2013)
 - Brandrisiko einer PV-Anlage: 0.016%

Einleitung Brandfälle Batteriesysteme*

- Datenbasis: Medienrecherche, Berichte von Polizei und Feuerwehren, Info von Versicherungen
- Anlagenbestand (D): ca. 65.000 oder 160 MWh (Stand: 07 / 2017)
 - Brandrisiko eines Batteriesystems: 0.012%

* Berücksichtigt werden nur Brandfälle, die an Batteriespeichern im Verbund mit einer PV-Anlage auftraten

Schutzkonzepte in PV-Batteriesystemen Überblick

- Ein Heimspeichersytem (1) enthält:
 - Mindestens ein Batteriemodul (2,3)
 - Ein Batteriemanagementsystem (BMS, 5)
 - DC-Trenneinrichtungen (Schalter, Sicherungen

- Hauptfunktionen des BMS
 - Monitoring der Zellspannungen
 - Monitoring der Zelltemperaturen
 - Notabschaltung
 - Balancing

7 Bildquellen v.l.n.r.: Hoppecke, Fraunhofer ISE, Materials Science and Engineering Reports [1]

Schutzkonzepte in PV-Batteriesystemen

Komponententests

Halten Schutz- und Verbindungskomponenten den zyklischen Belastungen eines Batteriesystems stand?

ISE testet ca. 90 verschiedene Komponenten über mindestens ein Jahr

DC Hauptschalter

Leitungsschutzschalter

PV Sicherungen

Neozed Sicherungen

Diazed Sicherungen

Klemmen

Schutzkonzepte in PV-Batteriesystemen Kurzschlusstests

Halten Schutzkomponenten hohen Batterie-Kurzschlussströmen stand?

- Alle untersuchten Komponenten (n = 4) trennen in spezifizierter Zeit
- Durchlassenergien (i²*t) nicht f
 ür alle Komponenten spezifiziert
- Kurzschlusszuschaltvermögen häufig kleiner als –abschaltvermögen

Lichtbogenszenarien in PV-Batteriesystemen Grundlagen

- Gasentladung zwischen zwei elektrischen Kontakten
- Temperaturen bis zu 10.000 K, Brandgefahr
- Hochfrequente Spannungsänderung erzeugt 1/f-Rauschen (pink noise)
 - Messbar als impedanzabhängiges Stromrauschen
 - $\underline{I}_{IB}(f) = \underline{U}_{IB}(f) / \underline{Z}(f)$
- Spannungsabfall über Lichtbogen erzeugt Arbeitspunktänderung im System*

* abhängig von Wechselrichter-Regelung

Lichtbogenszenarien in PV-Batteriesystemen Serielle Lichtbögen

- Brennbedinungen für stabilen Lichtbogen: $U_{LB,min} \approx 15 \text{ V}, \text{ I}_{Min} \approx 1 \text{ A}$
- Bedingung nicht erfüllt für Batteriesysteme ≤ 60 V
 - Arbeitsbereich der Batteriespannung zu klein
 - Außerhalb des Betriebsbereichs wird Strom durch EMS aktiv heruntergeregelt

Lichtbogenszenarien in PV-Batteriesystemen Serielle Lichtbögen

- Brennbedinungen für stabilen Lichtbogen: $U_{LB.min} \approx 15 \text{ V}, \text{ I}_{Min} \approx 1 \text{ A}$
- Bedingung nicht erfüllt für Batteriesysteme $\leq 60 \text{ V}$
 - Arbeitsbereich der Batteriespannung zu klein
 - Außerhalb des Betriebsbereichs wird Strom durch EMS aktiv heruntergeregelt

Speicher/BMS

 $\mathsf{U}_{\mathsf{Bat}'}$

<u>Serienlichtbögen auf Batterieseite können bei Systemen < 60 V durch EMS-</u> Regelung aktiv verhindert werden!*

Laderegler/EMS

Lichtbogenszenarien in PV-Batteriesystemen Detektionsmöglichkeiten

- Lichtbogen im 200 V
 Batteriesystem, Entladen
 - Spannung am EMS innerhalb des Betriebsbereichs
 - Konstanter Strom, stabiler
 Lichtbogen

<u>U_{Bat} ≠ U_{EMS} kann als einfach umzusetzendes Detektionsmerkmal für serielle</u> <u>Lichtbögen in Batteriesystemen verwendet werden!</u>

Lichtbogenszenarien in PV-Batteriesystemen Nachstellung mittels Replay-Methode (1)

Schritt 1

- Aufzeichnen eines Lichtbogensignals im realen DC-System
- Erstellung einer Datenbank mit verschiedenen Fehlerstellen, Batteriesystemen, Wechselrichtern...

Schritt 2

- Aufprägen des aufgezeichneten
 Stromsignals auf Prüfling im DC-Kreis
- Regelkreis mit Halbleiter gibt hochfrequentes Rauschen wieder
- Reproduzierbar, teils automatisierbar

Lichtbogenszenarien in PV-Batteriesystemen **Nachstellung mittels Replay-Methode (2)**

Spezifikation

- Geeignet für DC-Systeme bis 1000 V und 24 A
- Wiedergabe von Rauschsignalen von ca. 5 bis 500 kHz
- Galvanisch getrennte Eingangssignale
- Optional Arbeitspunktsprünge von bis zu 40 V oder 4 A nachstellbar

Fazit

- Forderung angemessener Schutzmechanismen nach Norm (z.B. VDE AR-E-2510-50, BATSO 01) wird das Brandrisiko von PV-Heimspeichersystemen stark senken
 - Besondere Anforderungen an Kurzschluss- und Zyklenfestigkeit der DC-Komponenten
- Im Gegensatz zu Li-Ionen-Batterien in der Consumer-Elektronik sind bei PV-Heimspeichersystemen bisher kaum Brandfälle bekannt
- Möglichkeiten zur Lichtbogenprävention und –detektion zur Zeit nicht auf dem Markt, aber mit überschaubarem Aufwand realisierbar

Vielen Dank!

- Ihnen f
 ür Ihre Aufmerksamkeit
- dem BMWi f
 ür die Projektf
 örderung

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Fraunhofer-Institut für Solare Energiesysteme ISE

Felix Eger

www.ise.fraunhofer.de

felix.eger@ise.fraunhofer.de

Quellen

M.-K. Song, S. Park, F. Alamgir, J. Cho, M. Liu, "Nanostructured Electrodes for Lithium-Ion and Lithium-Air Batteries: the Latest Developments, Challenges and Perspectives", Materials Science and Engineering: R: Reports, Volume 72, Issue 11, pp. 203-252, 2011

Backup

Lichtbogendetektion in Batteriesystemen

- Detektion auch aus Stromspektrum möglich, ABER:
 - Niedrigere Systemimpedanzen
 - Höheres Grund- und LB-Rauschen
 - Sättigung / Clipping von PV LB-Detektoren möglich

Detektion aus Spannungsmessung einfacher realisierbar als aus Stromspektrum!

Backup

Serieller Lichtbogen im generatorgekoppelten System

- Aufteilung des detektierbaren Rauschsignals auf Laderegler- und Wechselrichtereingang
- Bei ungünstiger Systemkonstellation kann
 Detektor keinen Fehler mehr erkennen
- Abhilfe: HF-Sperre an Laderegler-Eingang

Funktionalität eines konventionellen Lichtbogendetektors kann durch generatorgekoppeltes Speichersystem beeinträchtigt werden!

